FINAL TECHNICAL REPORT September 1, 1996, through April 30, 1998

Project Title: FIELD STUDIES OF ILLINOIS PCC BOTTOM ASH FOR STRUCTURAL GRADE CONCRETE PAVEMENTS

ICCI Project Number: Principal Investigator:

Project Manager:

96-1/3.1A-26 Nader Ghafoori, Southern Illinois University at Carbondale Daniel Banerjee, ICCI

ABSTRACT

In the past four years, Southern Illinois University at Carbondale (SIUC), under the sponsorship of Materials Technology Center, has performed a series of laboratory research into engineering properties and long-term durability of vibratory-placed and roller compacted structural grade concretes containing bituminous pulverized coal combustion (PCC) bottom ash. These laboratory efforts have resulted in identification of a number of potentially viable commercial applications for PCC bottom ash by-product residues.

One potential and promising application of the Illinois PCC solid waste residues, which also accounts for the large utilization of coal-based by-product materials, is in pavement construction. The proposal presented herein is intended to embark on a new endeavor in order to bring the commercialization aspect of the initial laboratory project a step closer to reality by conducting a field demonstration of the optimized mixtures identified during the four-year laboratory investigation. Eight different pavement slabs (each 24 ft wide by 24 ft long) were constructed at an identified site located in the Illinois Coal Development Park, Carterville, by two construction contractors who were part of the industrial participants of the initial projects. All sections were subjected to an extensive engineering evaluation and monitored for approximately two years for short, medium, and long-term performance. The field results were compared to that of the equivalent laboratoryprepared mixes in order to ascertain the suitability of the proposed PCC bottom ash concretes for field paving applications. Field cores taken from paving slabs were also tested for leaching of solid waste to obtain an aqueous solution which are used to determine the materials that could leach into groundwater under the specific testing conditions. The results were then compared with the requirements of Class I and II of IEPA Groundwater Quality Standards.

EXECUTIVE SUMMARY

Most modern pulverized-coal boilers have dry bottom furnaces; that is, the ash is intended to be removed as a dry solid before complete melting occurs. The PCC units operating within the state of Illinois are all dry boilers. These furnaces generally have open grates at their bases. Below the open grates there is generally a water-filled ash pit designed to receive the ash from the furnace. Although a small amount of molten slag will form on the internal walls of the boiler and find its way into the ash pit, a large portion of the dry bottom ash is collected in a dry state. By collecting the ash in a dry state, the physical properties of dry bottom ash are quite different from wet bottom slag. The dry bottom ash has the appearance of natural sand and, when examined under magnification, the spherical nature of these particles appear to be internally porous rather than externally porous. In addition, the predominant material is light in color and has a sand paper-like surface texture. The dry bottom ash is also lighter in weight than the slag bottom ash and, thus, generates a lighter product.

The objective of this program is to examine the performance of Illinois PCC bottom ash structural grade concrete pavements by conducting a demonstration project at a designated site in Carterville, Illinois. The major tasks assigned to this field study fully examine the engineering characteristics, long-term performance, and environmental issues involved in large-scale utilization of Illinois PCC bottom ash surface course highway pavements.

An experimental two-lane road, consisting of eight different vibratory-placed concrete slab sections, was constructed. Each 24 x 24 ft slab was 8 inches deep. In addition to longitudinal joints, shrinkage/construction joints were provided at 24 ft intervals. Dowels were used to transfer loads between slabs. A portion of the experimental road consisted of six solid slab sections. Three of them were made with 100% PCC bottom ash as a fine aggregate component of concrete. The remaining three solid sections were the control concretes made with 100% natural siliceous fine aggregate. There were two sandwich sections made with 4 in. deep of a richer concrete encased between 2 in. leaner mixtures. Cement factors of 550, 650, and 750 1b/yd³ were used. Concretes were prepared with a uniform consistency of $4\pm 1/4$ inches and an air-entrainment of $6\pm 1\%$. All trial mixtures possessed an identical volume of solid particles and were prepared with a constant slump, water-cement ratio, and air content. However, to achieve these uniform characteristics, the amount of added water-reducing and air-entraining admixtures had to vary among mixes. The dry components and proportion of each field and laboratory mixture are shown in Tables 1 and 13, respectively, along with the actual water-cement ratio and the amount of admixtures utilized. Once consolidation and final finishing were completed, slab sections were sprayed with curing compound and covered with a plastic sheet for a period of 7 to 10 days prior to opening to vehicular traffic flow.

Short-Term Properties of Field Paving Slabs - Table 2 documents the fresh properties of paving slabs. For a practically similar water-to-cement ratio and workability, the amount of bleeding water for the PCC bottom ash concrete was nearly 90% lower than

that of the control mix. This is explained through the finer PCC bottom ash particles which attached themselves to the cement particles, reducing the channels for bleeding and leaving very little free water available in fresh concrete for bleeding. Table 2 also reveals that inclusion of PCC bottom ash improved initial and final setting times when compared to that of the control concretes. When the fine aggregate portion contained 100% bottom ash, the initial and final setting times of the field mixtures decreased, over those of equivalent control mixes, by 17 and 20%, respectively. Increases in cement factor reduced the initial and final setting times of both PCC bottom ash and natural fine aggregate concretes in an approximately linear fusion. The peak adiabatic temperature rise and the corresponding elapsed time for both PCC bottom ash and reference field mixes are shown in Table 2. Test results indicate that all mixtures under consideration produced peak temperature at a rate similar to each other. The number of hours elapsed to reach the maximum temperature was also similar for PCC bottom ash concretes and reference mixtures. And finally, Table 2 displays the measured air content of the field freshly-mixed concretes which remained within the intended range of $6\pm1\%$.

Medium-Term Properties of Field Paving Slabs – As shown in Table 3, the unit weight of the PCC bottom ash concrete were slightly below that of the reference paving slabs. However, they remained in the range typically seen for normal weight concrete. Table 3 also documents wet (soaked) and air-dry compressive strengths of both PCC bottom ash and natural fine aggregate (control) concretes. The PCC bottom concretes gained 75.6% of its 28-day compressive strength in the first seven days after casting, and the 28-day compressive strength was exceeded by an average of 19 and 28% for the pavement ages of 91 and 180 days, respectively. The strength development of the control slabs followed a similar pattern, averaging 80% of the 28-day compressive strength by the first week. At the end of 91 and 180 days, additional gains of 21 and 31% were recorded over that observed after 28 days of pavement age. Under air-dry conditions, the compressive strength of the PCC bottom ash and natural sand concretes was nearly 11% higher than that obtained under soaked conditions. When compared against the control field slab specimens, the PCC bottom ash concrete exhibited a 9.2%, 10.41%, and 16.93% strength gain for the mixtures containing cement content of 550, 650, and 750 lb/yd³, respectively.

The splitting-tensile strengths of the PCC bottom ash and natural sand paving slabs are illustrated in Table 4 for both wet and air-dry conditions. The splitting-tensile strength improvements, over that of the reference concrete, were approximately 2.5%, 15.7%, 14.8%, 9.5% at pavement ages of 7, 28, 91, and 180 days, respectively. The splitting-tensile resistance under air-dry conditions was 9.5% and 12.6% higher than those tested in wet conditions for the PCC bottom ash and natural sand concretes, respectively. The splitting tensile-compressive strength ratios were in the range of 0.101 – 0.121 for the PCC bottom ash slabs, reproducing the results obtained for the control concretes (0.993 – 0.128).

The progression of flexural strength with respect to cement content and curing age is shown in Table 5. The flexural strength ratio of the PCC bottom ash to natural sand concretes was 1.08, 1.09, and 1.22 for the mixtures containing 550, 650, and 750 $1b/yd^3$

portland cement, respectively. The 91-day flexural strength exceeded the 28-day result by nearly 11 and 11.2% for the PCC bottom ash and reference mixes.

Table 6 documents the shrinkage strain of the test mixtures containing 550, 650, and 750 $1b/yd^3$ portland cement. The drying shrinkage of the paving slabs increased with time and stabilized after roughly 180 days from the time of initial casting. PCC bottom ash slabs displayed higher ultimate drying shrinkage strains (30.8, 17.6, and 17.7% at cement factors of 550, 650, and 750 $1b/yd^3$, respectively) than the equivalent paving sections made with control concretes.

Long-Term Properties of Field Paving Slabs – The results of accelerated chloride permeability tests are shown in Table 7. The control mixtures allowed, on average, 970% higher current flow than the PCC bottom ash concretes. All reference slabs are considered moderately permeable, whereas the PCC bottom ash paving sections can be classified as having very low permeability to chloride.

The resistance to abrasion of the PCC bottom ash and natural sand concretes (for the sawcut surface of the cross section) is shown in Table 8 for the mixtures containing 550 through 750 lb/yd³ portland cement. The abrasion resistance (via depth of wear) of the control mixtures improved by 9.7 and 23.8% when cement content increased from 550 to 650 to 750 lb/yd³, respectively. The PCC bottom ash concretes also exhibited a similar trend, and resistance to abrasion improved by 12.2 and 23.4% when the same cement contents were utilized. The average depth of wear for the bottom ash mixes was nearly 18% higher than that of the natural sand (control) concretes.

The absorption, an indirect measure of moisture conductivity, of both PCC bottom ash and natural sand slabs is shown in Table 9. The higher amount of fines in PCC bottom ash, as compared to that of the natural sand, provided lower absorption for the bottom ash concrete slabs. The 7-day absorptions of the PCC bottom ash concrete was lower by nearly 30% than that of the equivalent control mixes.

The resistance to freezing and thawing with deicing salts expressed in mass loss and surface rating of the field paving slabs is shown in Table 10. Although the impermeability of the bottom ash concretes surpassed that of the control mixes, the porous nature of the less-densed PCC bottom ash aggregate and the higher water-cement ratio resulted in a greater resistance to freezing and thawing with deicing salts for the natural sand concrete slab sections.

As documented in Table 11, all field specimens completed 300 freezing and thawing cycles with the lowest durability factor recorded at 95.4%. The PCC bottom ash concretes exhibited a similar resistance to rapid freezing and thawing when compared to that of the control field samples. Although the failure criterion (relative dynamic modulus of elasticity of 60%) was never reached, a moderate amount of surface scaling was found (after 300 freezing and thawing cycles) in the bottom ash specimen containing a low

cement content of 550 $1b/yd^3$. The mass loss and surface rating of all test specimens taken after 50 freezing and thawing cycles, up to 300 cycles, are shown in Table 11.

Leachate Studies – The results of ASTM shake tests for portland cement, PCC bottom ash, and field paving slabs are reported in Table 12. In general, all paving slabs under consideration, complied with the requirements of Class I and II of IEPA Groundwater. However, elements Tl and Sb recorded nois levels and they may be closely examined under (1) recalibration of ASTM shake test or (2) graphite furnace atomic absorption test.

Fresh and Hardened Properties of Laboratory-Made Specimens – the matrix components and proportions, and the resulting water-to-cement ratios are shown in Table 13. The results of the tests conducted for fresh and hardened properties are documented in Tables 14 and 15, respectively, for the PCC bottom ash and natural sand concretes.

Mixture	Cement	Natural	PCC	Limestone	Actual	Water-	Water	Air	Air Content
No.	Content	Fine	Bottom	Coarse	Water	Cement	Reducer	Entraining	Designated
	(lb/yd^3)	(lb/yd^3) Aggregate	(lb/yd^3)	Aggregate	(Evbdv3)	Ratio	Admixture	Admixture Admixture	%
•		(lb/yd^3)		(lb/yd^3)			(oz/100# of	(oz/100# of 02/100# of	
							cement)	cement)	
100	550	0	1160	1878	258	0.47	10	2	6+/- 1
200	650	0	1039	1878	272.35	0.419	10	2	6+/- 1
300	750	0	906	1878	288.8	0.385	10	2	6+/- 1
400*	550	1157	0	1936	246.5	0.448	0	-	6+/- 1
500*	650	1040	0	1936	243.4	0.375	0	-	6+/- 1
600*	750	668	0	1936	280	0.373	0	-	6+/- 1
S200, T or B	650	0	1039	1878	267.42	0.411	10	2	6+/- 1
S100, M	550	0 .	1160	1878	260.7	0.474	10	2	6+/- 1
S300, T or B	750	0	906	1878	286.36	0.381	10	2	6+/- 1
S100, M	550	0	1160	1878	260.7	0.474	10	2	6+/- 1
* Control Pavements	avements		S=Sandwich sections	th sections		T, B, & M=t	T, B, & M=top, bottom and middle	and middle	

ŀ

Table:1 Mixture Proportions of Field Paving Slabs

٢ 3 Tahle 2. Erech Pro

	_	I able Z: Fresh Properties of Field Paving Slabs	sn Propertie	es of Field F	aving Slab	s	
Mixture	Slump	Air	Bleeding	Initial	Final	Peak	Time to
No.	(in.)	Content	(%)	Time of	Time of	Adiabatic	Reach Peak
		Measured		Setting	Setting	Temperature	Adiabatic
		(%)		(hrs)	(hrs)	(degree F)	(hrs)
100	3.8	6.25	0.01	4.02	5.27	125	11
200	4.0	5.7	0.015	3.43	4.43	131	10
300	4.3	7	0.042	3.03	3.77	140	11
400	4.0	7	0.18	4.72	5.87	120	10
500	4.0	6.4	0.21	4.02	5.43	126	12
600	4.0	5.8	0.22	3.77	4.93	136	12
S200, T or B	4.0	2	0.023	3.53	4.64	132	10
S100, M	4.0	6	0.01	4.39	5.53	124	1
S300, T or B	4.3	9	0.05	3.22	4.00	143	11
S100, M	4.0	5.5	0.01	4.39	5.53	122	11

	-													
				180	5322	5868	7158	4886	5340	6070		5683		6287
	ength (psi)	ays)		91	4944	5417	6768	4490	4911	5705		5270		5903
g Slabs	Air-Dry Compressive Strength (psi)	Pavement Age (Days)		28	4143	4648	5534	3803	4118	4585		4496		4894
Table: 3 Unit Wieght and Compressive Strength of Field Paving Slabs	Air-Dry Co	Pav		7	3087	3517	4220	2949	3326	3737		3389		3712
ssive Strength	isi)			180	4783	5493	6261	4380	4954	5413		5168		5754
ht and Compre	ive Strength (p	Pavement Age (Days)		91	4443	1203	2920	4025	4556	5088		4785		5352
le: 3 Unit Wieg	Soaked Comprssive Strength (psi)	Pavement		28	3730	4291	4933	3389	3741	4093		4015		4468
Tab	So			7	2779	3247	3762	2628	3022	3336		2788		3217
	Unit	Wieght	(lb/yd^3)		136.8	140.2	145.4	145	146.2	148.3		138.6		141.4
	Mixture	No.			100	200	300	400	500	600	S200, T or B	S100, M	S300, T or B	S100, M

• • • • • •

Table 4: Splitting-Tensile Resistance of Field Paving Slabs

		I able 4. oplill	aure 4. oplimity-1 eristie resistance of Field Paving Stads	Islarice of Field	I Faving Slabs			
Mixture	Soak	<pre>ced Splitting-T</pre>	Soaked Splitting-Tensile Resistance (psi)	ce (psi)	Air-Di	Air-Dry Splitting-Tensile Resistance (psi)	sile Resistance	e (psi)
No.		Pavemen	Pavement Age (Days)			Pavement Age (Days)	Age (Days)	
	7	28	91	180	7	28	91	180
100	341	427	458	489	379	474	506	540
200	392	492	532	547	424	532	556	572
300	451	565	614	640	494	620	688	717
400	343	385	402	446	375	421	468	519
500	383	424	454	512	421	466	523	554
600	425	466	500	539	474	520	582	628
S200, T or B								
S100, M	378	468	493	516	406	516	539	564
S300, T or B								
S100, M	394	499	561	590	437	548	617	652

					1				1	T			
eld Paving Slabs	Age (days)		91	589	654	816	542	603	678		622		733
Table 5: Flexural Strength of Field Paving Slabs	Pavement Age (days)		28	537	585	734	506	535	596		561		667
Tat	Mixture	No.		100	200	300	400	500	009	S200, T or B	S100, M	S300, T or B	S100, M

aving Slabs	
Strain of Field P	
Shrinkage Strain	
Table 6: Shi	

			360	.034	0.04	.048	.026	0.034	0.041
				0					
22			270	0.033	0.04	0.048	0.026	0.033	0.04
מות המעוווט טומו	Shrinkage Strain (%)	Exposure Duration (Days)	180	0.031	0.038	0.045	0.025	0.031	0.038
	Shrinkage	Exposure Du	06	0.028	0.033	0.41	0.023	0.026	0.035
			. 09	0.021	0.027	0.038	0.018	0.023	0.028
			28	0.01	0.02	0.024	0.011	0.016	0.019
	Mixture	No.		100	200	300	400	500	600

Mixture	Charge Passed	Chloride Permeability
No.	(Coulombs)	
100	691	very low
200	288	very low
300	145	very low
400	3679	moderate
500	3001	moderate
600	2361	moderate

Table 7: Rapid Chloride Permeability of Field Paving Slabs

Table 8: Resistance to Abrasion of Field Paving Slabs

			_					
		20	330	290	253	269	243	205
		15	305	256	230	235	206	168
-4 in.)	tes)	10	276	229	194	206	173	139
ar (x 10^ -4	ation (Minutes)	7	251	213	178	178	148	121
Depth of Wear (x 10 ^A	Testing Dur	5	232	193	159	161	136	109
	-	3	200	167	137	135	108	95
		1	125	100	96	104	70	55
	·	0.5	100	75	83	81	57	42
Mixture	No.		100	200	300	400	500	600

abs		(s	7	2.03	1.83	1.40	2.73	2.45	2.21		1.91		1.58
d Paving SI	Absorption (%)	ration (Day:	с	1.93	1.78	1.37	2.68	2.33	2.19		1.94		1.45
Tabel 9: Absorption of Field Paving Slabs	Absorpt	Exposure Duration (Days)	7	1.82	1.7	1.33	2.60	2.20	2.07		1.77		1.41
el 9: Absor		Ш	~	1.70	1.63	1.28	2.50	2.08	1.93		1.68		1.30
Tab	Mixture	No.		100	200	300	400	500	009	S200, T or B	S100, M	S300, T or B	S100, M

bs	
Sla	
0	
Ľ.	
ş	
<u> </u>	
elo.	
ΪĹ	
ę	ľ
ts	I
Sal	
5	I
Ĵ.	Í
ë	
Ë	
2	ł
D	l
Ĩ	l
ĥa	ĺ
F	
ŭ	l
0	l
.Ĕ	
62	
۳ ۳	
0	
еt	
õ	
ita	
sis	
Š	
<u> </u>	
10	
0	
g	
μ	

Mixture		Mass Loss (%) and Surface Ratind*		Mass	Mass Loss (%) and Surface Ratind*	d Surface F	Satind*	000000	000	
No.					Number (Number of Cycles	D			
	5	10	15	20	25	30	35	40	45	20
100	0.23 (1)	0.79 (2)	1.52 (2) 2.35 (4)	2.35 (4)	3.22 (5)	4.2 (5)	4.99 (5)	5.91 (5)	6.72 (5)	7.59 (5)
200	0.06 (1)	0.09 (2)	0.24 (2)	0.37 (2)	0.52 (2)	0.70 (3)	0.96 (3)	1.17 (4)	1.41 (4)	1.54 (4)
300	0.04 (1)		0.07 (1)	0.14 (1)	0.06 (1) 0.07 (1) 0.14 (1) 0.25 (1)	0.36 (2)	0.50 (2)	0.64 (3)	0.85 (3)	0.96 (4)
· 400	0.03 (1)	0.06 (1)	0.12 (2)	0.19 (2)	0.19 (2) 0.31 (2) 0.44 (3)	0.44 (3)	0.56 (3)	0.81 (4)	1.03 (4)	1.18 (4)
500	0.03 (1)	0.07 (1)	0.12 (1)	0.18 (1)	0.24 (1)	0.41 (1)	0.49 (1)	0.60 (2)	0.75 (2)	0.89 (2)
600	0.04 (1)	0.05 (1)	0.1 (1)	0.16(1)	0.1 (1) 0.16 (1) 0.24 (1) 0.32 (1) 0.46 (1) 0.58 (2)	0.32 (1)	0.46 (1)		0.64 (2)	0.71 (2)
S200, T or B										
S100, M	0.14(1,1)**	S100, M 0.14(1,1)* 0.55 (2,1) 1.03 (3,2) 1.65 (4,2) 2.23 (5,3) 2.81 (5,3) 3.30 (5,4) 4.02 (5,4) 4.46 (5,4) 5.08 (5,5)	1.03 (3,2)	1.65 (4,2)	2.23 (5,3)	2.81 (5,3)	3.30 (5,4)	4.02 (5,4)	4.46 (5,4)	5.08 (5,5)
S300, T or B										×
S100, M	6.09 (1,1)	S100, M 6.09 (1,1) 0.44 (2,1) 0.82 (3,2) 1.2 (4,2) 1.67 (4,2) 1.89 (5,2) 2.29 (5,3) 2.77 (5,3) 3.24 (5,3) 3.97 (5,4)	0.82 (3,2)	1.2 (4,2)	1.67 (4,2)	1.89 (5,2)	2.29 (5,3)	2.77 (5,3)	3.24 (5,3)	3.97 (5,4)
* Surface F	Rating (): 0-	* Surface Rating (): 0- No Scaling, 1- Very Light Scaling (1/8in. Depth, Max, no coarse aggyrate visible), 2- Slight	, 1- Very Liç	tht Scaling	(1/8in. Dept	h, Max, no (coarse aggy	rrate visible), 2- Slight	

to Moderate Scaling, 3- Moderate Scaling (some coarse aggyrate visible), 4- Moderate to Severe Scaling, and 5- Severe Scaling (coarse aggryate visible over entire surface) ** (Rating of Middle Section, Rating of Outer Section)

Table 11: Resistance to Rapid Freezing and Thawing of Field Paving Slabs Mixture Durability Factor (%)/ Mass Loss (%)/ Surface Rating*	No. Number of Freezing and Thawing Cycles	50 100 150 200 250 300	100 100/ 0.03/ 0 100/ 0.07/ 1 98.84/ 0.14/ 2 98.84/ 0.17/ 2 97.67/ 0.30/ 3 96.51/ 0.41/ 4	200 100/ 0.03/ 0 100/ 0.05/ 0 99.42/ 0.08/ 1 99.12/ 0.13/ 1 98.27/ 0.21/ 2 97.39/ 0.29/ 3	300 100/ 0.02/ 0 100/ 0.03/ 0 99.68/ 0.08/ 1 99.28/ 0.12/ 1 98.63/ 0.18/ 2 97.71/ 0.23/ 2	400 100/ 0.04/ 0 100/ 0.06/ 1 98.70/ 0.13/ 1 98.34/ 0.18/ 2 96.13/ 0.26/ 3 95.43/ 0.31/ 3	500 100/ 0.03/ 0 100/ 0.05/ 0 98.90/ 0.08/ 1 98.35/ 0.13/ 1 96.70/ 0.18/ 2 96.15/ 0.23/ 2	600 100/ 0.0/ 0 100/ 0.03/ 0 99.45/ 0.05/ 1 99.01/ 0.10/ 1 98.81/ 0.15/ 1 97.92/ 0.18/ 2	* Surface Rating (): 0- No Scaling 1- Van/ 1 inht Scaling (1/8in Douth May an anoma and violate)	Mixture No. 100 200 200 400 600 600 Sturface Ratio	Table 11: Re: 50 100/ 0.03/ 0 100/ 0.03/ 0 100/ 0.04/ 0 100/ 0.04/ 0 100/ 0.04/ 0	sistance to Rapi Durability F Nurr 100/ 0.07/ 1 100/ 0.05/ 0 100/ 0.06/ 1 100/ 0.06/ 0 100/ 0.03/ 0	d Freezing and =actor (%)/ Mass hber of Freezing 150 98.84/ 0.14/ 2 99.42/ 0.08/ 1 98.70/ 0.13/ 1 98.70/ 0.13/ 1 98.70/ 0.08/ 1 98.70/ 0.13/ 1 98.45/ 0.05/ 1	Thawing of Field s Loss (%) Surft and Thawing Cy 200 98.84/ 0.17/ 2 99.12/ 0.13/ 1 98.34/ 0.18/ 2 98.35/ 0.13/ 1 98.35/ 0.13/ 1	Paving Slabs ace Rating* cles 250 97.67/ 0.30/ 3 98.63/ 0.18/ 2 96.13/ 0.26/ 3 96.170/ 0.18/ 2 98.81/ 0.15/ 1	300 96.51/ 0.41/ 4 97.39/ 0.29/ 3 95.43/ 0.31/ 3 96.15/ 0.23/ 2 96.15/ 0.23/ 2
--	---	----------------------------------	---	---	---	---	---	--	---	--	---	--	---	---	---	---

Ing, 1- Very Light Scaling (1/8in. Depth, Max, no coarse aggyrate visible), 2- Slight to Moderate Scaling, 3- Moderate Scaling (some coarse aggyrate visible), 4- Moderate to Severe Scaling, and 5- Severe Scaling (Coarse aggryate visible over entire surface)

_			-	-														·					·····		-
	600	0.01	0.1	0	0.02	1.06	0	069	0	0	0.09	0	0	0.1	0	0	0.05	0	0.01*	0.01	0.02*	0	0.21	11.57	
	500	0	0.12	0	0.06	1.27	0	635	0	0	0.08	0	0	0.2	0	0	0.5	0	0.03*	0.02	0.02*	0	0.6	12.31	
e No.	400	0	0.19	0	0.12	1.12	0	513	0	0	0.08	0.01	0	0.48	0	0	0.05	0	0.02*	0	0.02*	0	0.16	12.23	
Mixtur	300	0.01	1.63	0	0	0.69	0	22.2	0	0	0.07	0.01	0.08	0.22	0	0	0.05	0	0.02*	0	0.01*	0	0.21	11.82	
	200	0.01	0.6	0	0.01	1.09	0	348	0	0	0.08	0	0.08	0.26	0	0	0.05	0	0.02*	0.03	0.02*	0	0.36	12.12	t Available
	100	0.01	0.39	0	0	1.52	0	465	0	0	0.07	0	0.06	0.2	0	0	0.05	0	0.03*	0.02	0.01*	0	0.45	12.08	and NA = Not Available
PCC	Bottom Ash	DN	1.06	DN	0.36	0.12	ND	60	QN	QN	0.08	DN	DN	ND	QN	0.07	0.06	QN	0.05*	0.01	0.02*	0.1	0.1	NA	
Portland	Cement	ND	0.09	ND	0.017	1.19	ND	960	DN	ND	0.17	. DN	DN	ND	DN	0.07	0.06	QN	0.04*	ND	0.03*	DN	0.28	NA	Not Detectable, * Noise Level.
Class 2	Standard	1	1	0.2	2	I	0.5	TDS=1200	0.05	1	-	0.65	5	1	10	•	- 2	0.1	0.024	0.05	0.02	1	10	-	_
Class 1	Standard	0.05	1	0.05	2	2	0.004	I	0.005	1	0.1	0.65	5		0.15	1	0.1	0.0075	0.006	0.05	0.002	I	5	1	- None, ND =
Element	(PPM)	Ag	A	As	В	Ba	Be	Ca	Cd	ပိ	ŗ	Cu	Fe	Mg	Mn	Мо	Ni	Ъb	Sb	Se	F	>	Zn	Ηd	
	Class 1 Class 2 Portland	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 400 500	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 0	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 - - 0.09 1.06 0.39 0.6 1.63 0.12 0.12	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 - - 0.09 1.06 0.39 0.66 1.63 0.12 1 0.05 0.2 ND ND 0 0 0 0 0 0	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 - - 0.09 1.06 0.39 0.6 1.63 0.12 0 0 0.05 0.2 ND ND 0 0 0 0 0 2 2 2 0.017 0.36 0 0 0 0 0	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 - - 0.09 1.06 0.39 0.6 1.63 0.19 0.12 0 0.5 0.2 0.17 0.36 0.6 1.63 0.19 0.12 1 1 2 2 0.17 0.36 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 0 - - 0.09 1.06 0.39 0.6 1.63 0.19 0.12 1 0 0.5 0.2 ND ND 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 0 - - 0.09 1.06 0.39 0.6 1.63 0.19 0.12 0 0.05 0.2 ND ND 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 0.05 - 0.09 1.06 0.39 0.6 1.63 0.19 0.12 0.05 0.2 ND ND 0 0 0 0 0 0 22 2 0.017 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0 0.05 - 0.09 1.06 0.39 0.6 1.63 0.12 0 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 0.05 - 0.09 1.06 0.39 0.6 1.63 0.12 0 0.05 0.2 ND ND 0 0 0 0 0 0 2 2 0.017 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0 - - 0.09 1.06 0.39 0.6 1.63 0.12 0 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 - 0.09 1.06 0.39 0.6 1.63 0.19 0.12 1 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cenent Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 $-$ 0.09 1.06 0.39 0.6 1.63 0.19 0.12 $-$ 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 0.05 - 0.09 1.06 0.39 0.6 1.63 0.12 0 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 0.05 - 0.09 1.06 0.39 0.6 1.63 0.19 0.12 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500</td> <td>Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0.12 0.12 0.05 0.2 ND ND 0.01 0.01 0.12 0.12 0.12 2 2 0.017 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0.01 0.01 - - 0.09 106 0.39 0.6 1.63 0.12 0.02 - - 0.09 106 0.39 0.6 1.63 0.12 0.12 - 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>Class 1 Class 2 Portland PCC Mixture No. Standard Standard Standard Standard Standard Standard Cement No. ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01</td><td>Class 1 Class 2 Portiand Nextore PCC Mixture No. Standard Cement Bottom Ash 100 200 300 400 500 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0</td><td>Class 1 Class 2 Portland PCC Mixture No. 0.05 - ND ND 0.01 0.01 0.01 0.0 500 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0</td><td>Class 1 Class 2 Portland PCC Mixture No. 0.05 - ND ND 0.01 0.01 0.01 0.0 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 700 0.12 500 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700</td></td></td>	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0 - - 0.09 1.06 0.39 0.6 1.63 0.12 0 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 - 0.09 1.06 0.39 0.6 1.63 0.19 0.12 1 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cenent Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 $-$ 0.09 1.06 0.39 0.6 1.63 0.19 0.12 $-$ 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 0.05 - 0.09 1.06 0.39 0.6 1.63 0.12 0 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0 0 0.05 - 0.09 1.06 0.39 0.6 1.63 0.19 0.12 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0.12 0.12 0.05 0.2 ND ND 0.01 0.01 0.12 0.12 0.12 2 2 0.017 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0.01 0.01 - - 0.09 106 0.39 0.6 1.63 0.12 0.02 - - 0.09 106 0.39 0.6 1.63 0.12 0.12 - 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>Class 1 Class 2 Portland PCC Mixture No. Standard Standard Standard Standard Standard Standard Cement No. ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01</td><td>Class 1 Class 2 Portiand Nextore PCC Mixture No. Standard Cement Bottom Ash 100 200 300 400 500 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0</td><td>Class 1 Class 2 Portland PCC Mixture No. 0.05 - ND ND 0.01 0.01 0.01 0.0 500 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0</td><td>Class 1 Class 2 Portland PCC Mixture No. 0.05 - ND ND 0.01 0.01 0.01 0.0 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 700 0.12 500 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700</td></td>	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Cement Bottom Ash 100 200 300 400 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0.01 0.01 - - 0.09 106 0.39 0.6 1.63 0.12 0.02 - - 0.09 106 0.39 0.6 1.63 0.12 0.12 - 0.05 0.2 ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>Class 1 Class 2 Portland PCC Mixture No. Standard Standard Standard Standard Standard Standard Cement No. ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01</td> <td>Class 1 Class 2 Portiand Nextore PCC Mixture No. Standard Cement Bottom Ash 100 200 300 400 500 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0</td> <td>Class 1 Class 2 Portland PCC Mixture No. 0.05 - ND ND 0.01 0.01 0.01 0.0 500 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0</td> <td>Class 1 Class 2 Portland PCC Mixture No. 0.05 - ND ND 0.01 0.01 0.01 0.0 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 700 0.12 500 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700</td>	Class 1 Class 2 Portland PCC Mixture No. Standard Standard Standard Standard Standard Standard Cement No. ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Class 1 Class 2 Portiand Nextore PCC Mixture No. Standard Cement Bottom Ash 100 200 300 400 500 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	Class 1 Class 2 Portland PCC Mixture No. 0.05 - ND ND 0.01 0.01 0.01 0.0 500 500 0.05 - ND ND 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0	Class 1 Class 2 Portland PCC Mixture No. 0.05 - ND ND 0.01 0.01 0.01 0.0 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 700 0.12 500 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700

.

Not Detectable, " Noise Level, and NA = Not Available None, NU

	_					-			1	1	1	٦.
	Air	Content	Designated	(%)		6 +/- 1	6 +/- 1	6 +/- 1	6 +/- 1	6 +/- 1	6 +/- 1	
	Air	Reducer Entraining	Admixture Admixture Designated	(oz/100 # (oz/100 #	of cement)	5	5	5	-	-	2	
acilialis	Water	Reducer	Admixture	# 001/zo)	of cement) of cement)	б	6	8	0	0	0	
I able 19. MINIMULE LIQUININO I LADUI ALUI ALMAUE OPECIIIIAIN	Water	Cement	Ratio			0.54	0.4	0.375	0.45	0.4	0.375	
UI Labulatu	Added	Water	(lb/yd^3)			247.5	260	281.3	118.4	110	110.6	
eiinin idni	Limestone	Coarse	Aggregate	(lb/yd^3)		1878	1878	1878	1936	1936	1936	
	DOG	Bottom	Ash	(Evbdv3)		1160	1039	906	0	0	0	
ו מחום וי	Natural	Fine	(lb/yd^3) Aggregate	(lb/yd^3)		0	0	0	1157	1040	668	
	Cement	Content	(lb/yd^3)			550	650	750	550	650.	750	livturoe
	Mixture	No.				100	200	300	+002	800*	*006	* Control Mixturoe

Table 13: Mixture Proprotions of Laboratory-Made Specimans

Control Mixtures

O OPON M de l jo Table 14. Fresh Properties

	One-Day	Demoled	Unit	Weight	(lb/ft^3)		142.3	143.1	143.8	145.9	146.5	147.1
6	Time to	Reach	Peak	Adiabatic	Temperature	(hrs)	11	10	11	10	12	12
e Speciman	Peak	Adiabatic	Temperature	(degree F)			125	131	140	120	126	136
ratory-Made	Final	Times of	Setting	(hrs)			4.25	3.93	3.77	4.75	4.7	4.68
ties of Labo	Initial	Times of	Setting	(hrs)			3.12	2.73	2.55	3.63	3.58	3.23
esn Proper	Bleeding	(%)					0	0.01	0.047	0.305	0.324	0.352
able 14: Fresh Properties of Laboratory-Made Specimans	Air	Content	Measured	(%)			6.5	5.5	5.5	6	9	9
_	Slump	(in.)					4+/- 1/4	4+/- 1/4	4+/- 1/4	4+/- 1/4	4+/- 1/4	4+/- 1/4
	Mixture	No.					100	200	300	700	800	006

	ength (psi)	Curring Age (Days)	91	694	765	805	581	649	687
	Flexural Stength (psi)	Curring A	28	633	684	724	542	576	604
2	(psi)		180	640	682	730	547	613	631
	Resistance	je (Days)	91	600	663	200	493	544	585
	Splitting Tensile Resistance (psi)	Curring Age (Days)	28	544	608	647	444	489	524
	Splitti		7	435	485	516	396	442	478
	si)		180	6249	6574	7086	5398	5878	6187
	ressive Strength (psi)	urring Age (Days)	91	5805	6069	6700	4960	5406	5815
	Compressive	Curring A	28	4879	5237	5565	4310	4633	4970
	ပိ	•	7	3635	3963	4244	3342	3742	4051
	Mixture	No.		100	200	300	400	500	600

Table 15: Hardened Properties of Laboratory-Made Samples

OBJECTIVES

This research investigation and its assigned tasks is designed to ascertain the constructability and performance of the concrete mixtures containing dry PCC bottom ash, identified during the four-year laboratory investigation, using vibratory and roller compacted techniques, under realistic climatic and traffic flow of field conditions. Eight different matrix proportions are considered for the construction of the experimental twolane road. Seven major tasks are proposed. In the first assignment, physico-chemical characteristics of concrete constituents; such as pH, a complete chemical analyses, size gradation and fineness modulus, specific gravity and absorption, unit weight, and particle shape; are identified. The second and third tasks of the proposed project are devoted to (1) selection of combined aggregates and optimal mixture proportions identified during the laboratory studies, and (2) pavement thickness design, respectively. In the fourth task, the construction of the proposed experimental road is described in details. The fifth task of the proposed project is used to evaluate short-medium and long-term performance of the experimental slabs. Field cores will be tested at different stages for compression, splittingtension, flexure, modulus of elasticity, shrinkage, abrasion, chloride permeability, and freezing and thawing tests. Task six is used to examine the engineering characteristics of on-site mixtures cast in the laboratory. These laboratory-made samples are subjected to various testings in order to identify the proper correlation between field and laboratory specimens. The seventh and final task addresses the issue of the groundwater contamination which is usually raised whenever coal combustion residues are utilized. Cores obtained from each experimental slab are tested for leaching of solid waste to obtain a solution that will determine the constituents that could enter into groundwater.

An experimental two-lane road consisted of eight different vibratory-placed concrete slabs was constructed. Each 24 x 24 ft section was 8 inches deep. In addition to longtudinal joints, shrinkage/construction joints were provided at 24 ft intervals. Dowels were used to transfer loads between slabs. A portion of the experimental road consisted of nine solid slab sections. Three of them were made with 100% PCC bottom ash as a fine aggregate component of concrete. The remaining three solid sections were the control concretes made with 100% natural siliceous fine aggregate. There were two sandwich sections made with 4 in. deep of a richer concrete encased between 2 in. leaner mixtures. Cement factors of 550, 650, and 750 1b/yd³ were used. Concrete mixtures were prepared with a uniform consistency of $4\pm 1/4$ inches and an air-entrainment of $6\pm 1\%$. Fresh properties of the field and laboratory mixtures are reported.

INTRODUCTION AND BACKGROUND

The coal and utility industries are the major source of mining and industrial wastes in the state of Illinois. The readily available supply of coal and its use in coal burning electric generating plants and co-generation pulverized coal combustion facilities has resulted in production and accumulation of large quantities of by-product residues (over five million tons per annum). Additionally, the use of scrubber sludge to facilitate sulfur reduction of Illinois high-sulfur coal also generates large quantities of scrubber sludge annually. With

only 20% utilization, where the remaining by-products are disposed in landfills and ponds, and the expected growth in power generation; the industry is faced with a lack of available disposal space, storage cost, and environmental consequences for surrounding communities.

Over the past four years, the Department of Civil Engineering at SIUC has directed a laboratory program designed to investigate the basic engineering characteristics of PCC dry lignite and bituminous and their potential applications for various aspects of the construction industry. Both conventional (vibratory-placed) and roller compacted concretes were utilized. Over ten thousands of the laboratory-made samples were subjected to a comprehensive review of (1) fresh characteristics (early shrinkage, initial and final setting times, air content, vibration time, and demolded density); (2) hardened properties (strength, deformation, stiffness, expansion and shrinkage); and (3) long-term durability (external sulfate attack, rapid chloride permeability, abrasion wear, freezing and thawing with deicing salts, and rapid freezing and thawing).

While the four-year laboratory investigation has provided valuable scientific data on the performance of various PCC concrete mixtures and identified a number of potentially viable paving applications, field feasibility studies are needed to bring the laboratory investigation a step closer to reality. It is, therefore, the thrust of this research project to evaluate the constructability and performance of field experimental slabs utilizing Illinois PCC dry bottom ash as a filler aggregate of concrete matrix. Cored samples of hardened concretes are tested for a variety of mechanical properties and long-term performance under different climatic conditions and ages.

In summary, this proposed investigation and relevant tasks are intended to provide fundamental scientific data and strong argument for commercialization of PCC bottom ash derived from Illinois high-sulfur coal in surface course pavement applications. Construction, mining, power generation, and cogenerating industries within the state of Illinois are expected to benefit from the proposed study via the provision of an alternative solution for the productive disposal of large quantities of PCC wastes and by their utilization as a viable synthetic aggregate for a variety of structural grade highway-related applications. The goal of this investigation, regarding full substitution for natural fine aggregates, are threefold: (1) to recycle by-product wastes, and thus, reducing the overall disposal costs to utility and co-generation plants; (2) to develop a substitute material which will alleviate the shortage of natural resources; and (3) to lower the unit cost of highway construction by developing a cost-effective technology aimed at providing the construction industry with less expensive substitute materials. As a consequence, a successful implementation of new highway materials will be of joint benefit to the Illinois Clean Coal Institute, industry, and to the citizens of Illinois by contributing significantly to the economic well-being of the state.

EXPERIMENTAL PROCEDURES

Tests used for the evaluation of the test samples included ASTM C 143 (workability), ASTM C 232 (bleeding), ASTM C 403 (setting time), ASTM C 231 (air content), and ASTM C 39 (unit weight). For the measurement of adiabatic temperature, the fresh matrix was placed 5 inches in diameter by 5 inches in height cyclindrical insulated plastic container lined with a plastic bag. A type J thermocouple wire was inserted into the fresh mortar to a depth of 4 inches. The container was then securely sealed into a tightly sealed insulated 26 x 26 x 29 inches wooden box. The thermocouple wire was plugged into a data recorder which registered and logged the mortar temperature at 1 hour intervals over a period of 100 hours.

For each field paving slab, various tests were performed on both fresh and hardened materials. Consistency, bleeding, air content, early volume shrinkage, and time of settings were conducted in accordance with ASTM C 143, C 232, C 231, C 826, and C 403, respectively. Cylindrical cors for compressive strength, and splitting-tensile resistance were tested according to ASTM C 39 and C 496, respectively. Flexural strengths using third-point loading were evaluated based on ASTM C 78. Tests for rapid chloride permeability, rapid freezing and thawing with deicing salts, sulfate durability, abrasion, freezing and thawing, and length change (shrinkage strain) were conducted in accordance with American Association of State Highway and Transportation Officicals (AASHTO) T 277, CAN 3 – A231.2 - M85, ASTM C 1012, ASTM C 779 (procedure C, ball bearings), ASTM C 666 (procedure A), and ASTM C 157, respectively.

RESULTS AND DISCUSSION

Short-Term Properties of Field Paving Slabs - Table 2 of the Technical Report documents the fresh properties of paving slabs. For a practically similar water-to-cement ratio and workability, the amount of bleeding water for the PCC bottom ash concrete was nearly 90% lower than that of the control mix. This is explained through the finer PCC bottom ash particles which attached themselves to the cement particles, reducing the channels for bleeding and leaving very little free water available in fresh concrete for bleeding. Table 2 of the Technical Reports also reveals that inclusion of PCC bottom ash improved initial and final setting times when compared to that of the control concretes. When the fine aggregate portion contained 100% bottom ash, the initial and final setting times of the field mixtures decreased, over those of equivalent control mixes, by 17 and 20%, respectively. Increases in cement factor reduced the initial and final setting times of both PCC bottom ash and natural fine aggregate concretes in an approximately linear fusion. The peak adiabatic temperature rise and the corresponding elapsed time for both PCC bottom ash and reference field mixes are shown in Table 2 of the Technical Report. Test results indicate that all mixtures under consideration produced peak temperature at a rate similar to each other. The number of hours elapsed to reach the maximum temperature was also similar for PCC bottom ash concretes and reference mixtures. And finally, Table 2 of the Technical Report displays the measured air content of the field freshly-mixed concretes which remained within the intended range of $6\pm1\%$.

Medium-Term Properties of Field Paving Slabs - As shown in Table 3 of the Technical Report, the unit weight of the PCC bottom ash concrete were slightly below that of the reference paving slabs. However, they remained in the range typically seen for normal weight concrete. Table 3 of the Technical Report also documents wet (soaked) and airdry compressive strengths of both PCC bottom ash and natural fine aggregate (control) concretes. The PCC bottom concretes gained 75.6% of its 28-day compressive strength in the first seven days after casting, and the 28-day compressive strength was exceeded by an average of 19 and 28% for the pavement ages of 91 and 180 days respectively. The strength development of the control slabs followed a similar pattern, averaging 80% of the 28-day compressive strength by the first week. At the end of 91 and 180 days, additional gains of 21 and 31% were recorded over that observed after 28 days of pavement age. Under air-dry conditions, the compressive strength of the PCC bottom ash and natural sand concretes was nearly 11% higher than that obtained under soaked conditions. When compared against the control field slab specimens, the PCC bottom ash concrete exhibited a 9.2%, 10.41%, and 16.93% strength gain for the mixtures containing cement content of 550, 650, and 750 1b/yd³, respectively.

The splitting-tensile strengths of the PCC bottom ash and natural sand paving slabs are illustrated in Table 4 of the Technical Report for both wet and air-dry conditions. The splitting-tensile strength improvements, over that of the reference concrete, were approximately 2.5%, 15.7%, 14.8%, 9.5% at pavement ages of 7, 28, 91, and 180 days, respectively. The splitting-tensile resistance under air-dry conditions was 9.5% and 12.6% higher than those tested in wet conditions for the PCC bottom ash and natural sand concretes, respectively. The splitting tensile-compressive strength ratios were in the range of 0.101 - 0.121 for the PCC bottom ash slabs, reproducing the results obtained for the control concretes (0.993 - 0.128).

The progression of flexural strength with respect to cement content and curing age is shown in Table 5 of the Technical Report. The flexural strength ratio of the PCC bottom ash to natural sand concretes was 1.08, 1.09, and 1.22 for the mixtures containing 550, 650, and 750 1b/yd³ portland cement, respectively. The 91-day flexural strength exceeded the 28-day result by nearly 11 and 11.2% for the PCC bottom ash and reference mixes.

Table 6 of the Technical Report documents the shrinkage strain of the test mixtures containing 550, 650, and 750 lb/yd³ portland cement. The drying shrinkage of the paving slabs increased with time and stabilized after roughly 180 days from the time of initial casting. PCC bottom ash slabs displayed higher ultimate drying shrinkage strains (30.8, 17.6, and 17.7% at cement factors of 550, 650, and 750 lb/yd³, respectively) than the equivalent paving sections made with control concretes.

Long-Term Properties of Field Paving Slabs – The results of accelerated chloride permeability tests are shown in Table 7 of the Technical Report. The control mixtures allowed, on average, 970% higher current flow than the PCC bottom ash concretes. All

reference slabs are considered moderately permeable, whereas the PCC bottom ash paving sections can be classified as having very low permeability to chloride.

The resistance to abrasion of the PCC bottom ash and natural sand concretes (for the sawcut surface of the cross section) is shown in Table 8 of the Technical Report for the mixtures containing 550 through 750 lb/yd³ portland cement. The abrasion resistance (via depth of wear) of the control mixtures improved by 9.7 and 23.8% when cement content increased from 550 to 650 to 750 lb/yd³, respectively. The PCC bottom ash concretes also exhibited a similar trend, and resistance to abrasion improved by 12.2 and 23.4% when the same cement contents were utilized. The average depth of wear for the bottom ash mixes was nearly 18% higher than that of the natural sand (control) concretes.

The absorption, an indirect measure of moisture conductivity, of both PCC bottom ash and natural sand slabs is shown in Table 9 of the Technical Report. The higher amount of fines in PCC bottom ash, as compared to that of the natural sand, provided lower absorption for the bottom ash concrete slabs. The 7-day absorptions of the PCC bottom ash concrete was lower by nearly 30% than that of the equivalent control mixes.

The resistance to freezing and thawing with deicing salts expressed in mass loss and surface rating of the field paving slabs is shown in Table 10 of the Technical Report. Although the impermeability of the bottom ash concretes surpassed that of the control mixes, the porous nature of the less-densed PCC bottom ash aggregate and the higher water-cement ratio resulted in a greater resistance to freezing and thawing with deicing salts for the natural sand concrete slab sections.

As documented in Table 11 of the Technical Report, all field specimens completed 300 freezing and thawing cycles with the lowest durability factor recorded at 95.4%. The PCC bottom ash concretes exhibited a similar resistance to rapid freezing and thawing when compared to that of the control field samples. Although the failure criterion (relative dynamic modulus of elasticity of 60%) was never reached, a moderate amount of surface scaling was found (after 300 freezing and thawing cycles) in the bottom ash specimen containing a low cement content of 550 1b/yd³. The mass loss and surface rating of all test specimens taken after 50 freezing and thawing cycles, up to 300 cycles, are shown in Table 11 of the Technical Reports.

Leachate Studies – The results of ASTM shake tests for portland cement, PCC bottom ash, and field paving slabs are reported in Table 12 of the Technical Report. In general, all paving slabs under consideration, complied with the requirements of Class I and II of IEPA Groundwater. However, elements Tl and Sb recorded nois levels and they may be closely examined under (1) recalibration of ASTM shake test or (2) graphite furnace atomic absorption test.

Fresh and Hardened Properties of Laboratory-Made Specimens – the matrix components and proportions, and the resulting water-to-cement ratios are shown in Table 13 of the Technical Report. The results of the tests conducted for fresh and hardened

properties are documented in Tables 14 and 15 of the Technical Report, respectively, for the PCC bottom ash and natural sand concretes.

CONCLUSIONS AND RECOMMENDATIONS

PCC bottom ash concretes display excellent mixability, consolidability, and finishability, similar to that of control mixtures. Both laboratory and field results reveal that inclusion of bottom ash improves bleeding and initial and final setting times when compared to that of control concretes. All mixtures exhibited similar maximum adiabatic temperature and the corresponding elapsed time. PCC bottom ash concrete slab produces a nearly 20% higher shrinkage strain than that of the equivalent control pavement. The strength properties, absorption, and rapid chloride permeability of the PCC bottom ash concretes are superior to those of the companion control mixes. Under accelerated laboratory testings, the PCC bottom ash concretes perform slightly below the reference mixes when subjected to repeated freezing and thawing cycles (with or without deicing salts) and abrasion.

DISCLAIMER STATEMENT

"This report was prepared by Dr. Nader Ghafoori of Southern Illinois University at Carbondale with support, in part by grants made possible by the Illinois Department of Commerce and Community Affairs through the Illinois Coal Development Board and the Illinois Clean Coal Institute. Neither Dr. N. Ghafoori, or Southern Illinois University at Carbondale, nor any of its subcontractors, nor the Illinois Department of Commerce and Community Affairs, Illinois Coal Development Board, Illinois Clean Coal Institute, nor any person acting on behalf of either:

- (A) Makes any warranty of representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately-owned rights; or
- (B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring; nor do the views and opinions of authors expressed herein necessarily state or reflect those of the Illinois Department of Commerce and Community Affairs, Illinois Coal Development Board, or the Illinois Clean Coal Institute.

Notice to Journalists and Publishers: If you borrow information from any part of this report, you must include a statement about the State of Illinois' support of the project."

PROJECT MANAGEMENT REPORT September 1, 1996, through April 30, 1998

Project Title: FIELD STUDIES OF ILLINOIS PCC BOTTOM ASH FOR STRUCTURAL GRADE CONCRETE PAVEMENTS

ICCI Project Number: Principal Investigator:

Project Manager:

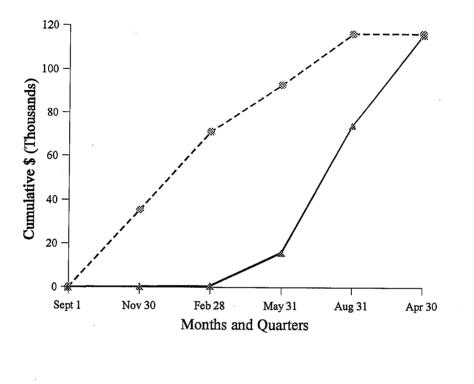
96-1/3.1A-26 Nader Ghafoori, Southern Illinois University at Carbondale Daniel Banerjee, ICCI

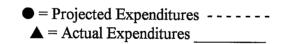
COMMENTS

Due to unavailability of the needed volume of PCC bottom ash and arrival of the winter climate (Winter 1996), with prior approval from ICCI, the road construction was postponed to Spring 1997. The low budget expenditure reflects this delay. In late March 1997, nearly 400 tons of PCC bottom ash was delivered. During the months of April-May 1997, they were sieved for proper gradation. In late May 1997, the grading of the site and the construction of the experimental road began. In early June 1997, an experimental two-lane road, consisting of fourteen 24-ft long solid and sandwich slab sections, was constructed. An 8-month project extention was granted by ICCI. All project milestones were completed before April 30, 1998.

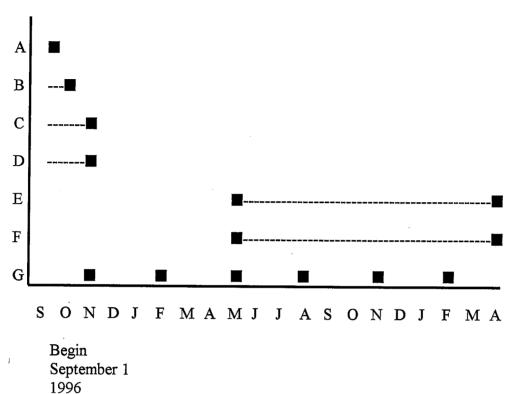
PROJECTED AND ESTIMATED EXPENDITURES BY QUARTER

ì


)


Quarter*	Types of Cost	Direct Labor	Fringe Benefits	Materials and Supplies	Travel	Major Equipment	Other Direct Costs	Indirect Cost	Total
Sept. 1, 1996	Projected	6,498	883	2,178	0	0	22,748	3,231	35,538
to Nov. 30,1996	Estimated	0	0	70	0	0	230	30	330
Sept. 1, 1996	Projected	12,995	1,766	4,356	0	0	45,496	6,461	71,074
to Feb. 28, 1997	Estimated	0	0	282	80	0	282	64	708
Sept. 1, 1996	Projected	19,492	2,649	5,445	0	0	56,870	8,446	92,902
to May 31, 1997	Estimated	3,839	312	623	499	0	9,173	1,453	15,899
Sept. 1, 1996	Projected	25,990	3,534	6,535	1,200	0	68,245	10,550	116,054
to April 30, 1998	Estimated	25,980	3,534	6,432	1,200	0	67,948	10,550	115.644
*Cumulative by Quarter	Quarter								

2


CUMULATIVE COSTS BY QUARTER

Field Studies of Illinois PCC Bottom Ash for Structural Grade Concrete Pavements

Total Illinois Clean Coal Instutute Award \$116,054

Milestones:

A. Research assistants employed.

- B. Preparation of raw materials.
- C. Physico-chemical properties of raw materials.
- D. Preparation and grading of the site and construction of field slab pavements.
- E. Evaluation of field-cored specimens for strength, deformation,

SCHEDULE OF PROJECT MILESTONES